Así se “entierran” los residuos radiactivos: cómo son los cementerios nucleares por dentro

Nadie los quiere, pero son necesarios para mantener este sistema demencial. Los cementerios nucleares son aquellos refugios donde almacenar y guardar residuos radiactivos, aquellos compuestos que por su naturaleza o por haber estado expuestos a una alta radiación siguen siendo peligrosos durante una gran cantidad de años. ¿Qué hacer entonces con estos residuos radiactivos? Esconderlos y guardarlos, bien hasta que se desintegren o hasta que se encuentre una mejor solución.

Los distintos cementerios nucleares se dividen en distintas categoría, en función de sus niveles de radiactividad. Y es que dentro de esos bidones amarillos que todos solemos relacionar con la energía nuclear, puede haber desde material relacionado con la fisión como uranio o plutonio, pero también cualquier material contaminado, sea ropa, ordenadores o simplemente agua.

Qué se hace con los residuos radiactivos para que no contaminen

     Mapa de un cementerio nuclear de bajo nivel.

Algunos residuos de baja y media actividad, como la ropa y las herramientas utilizadas en el mantenimiento de las centrales, se diluyen y eliminan con el tiempo. Otros son sometidos a tratamientos para intentar separar los elementos radiactivos. El resto se introducen en bidones de acero y se solidifican con alquitrán o cemento para ser almacenados hasta que el periodo radiactivo finaliza. Habitualmente menos de 30 años.

Sin embargo también hay residuos de alta actividad, normalmente aquellos generados con el combustible gastado. En este caso se intentan almacenar en la propia central hasta ser transportados en contenedores de metal resistentes a la corrosión. Es aquí donde entran los cementerios nucleares, que no dejan de ser refugios aislados donde guardar estos desechos.

Podemos diferenciar los cementerios nucleares en dos tipos: los temporales, ubicados en almacenes e instalaciones y los que se conocen como repositorios geológicos profundos, ubicados en zonas estables, aisladas de terremotos y lejos de la superficie. Auténticas galerías selladas para que estos residuos no estén en contacto con el hombre.

El Cabril, el único cementerio nuclear en España

Contenedores de hormigón fabricados a prueba de terremotos. Imagen de Xataka Ciencia.

El único cementerio nuclear español está preparado para materiales de baja y media actividad. Se trata de El Cabril, ubicado en Hornachuelos. El contenido es básicamente bidones de las centrales nucleares, con un tercio de material radiactivo y dos tercios de cemento. Todo este material se ubica en el complejo, que anteriormente era una vieja mina de uranio.

Enresa (Empresa Nacional de Residuos Radiactivos) es la encargada de su funcionamiento. El Cabril dispone además de oficinas, laboratorios, una incineradora, una piscina de agua y un depósito ciego para posibles filtraciones. Se trata de un centro muy preparado, pero hoy en día está cerca del máximo de su capacidad.

Sin embargo hay bastante polémica con la ampliación del recinto. “El cementerio nuclear del Cabril nunca debería haberse construido porque está en el sur de la Península Ibérica. Está muy alejado de la mayoría de instalaciones nucleares y radiactivas”, afirma Paco Castejón, ingeniero y portavoz de Ecologistas en Acción. En su lugar, desde finales de 2011 se eligió el municipio de Villar de Cañas para albergar un nuevo ATC (Almacén Temporal Centralizado). Sin embargo las reticencias de la población y la poca determinación del Gobierno ha provocado que se estén barajando otras opciones.

 Interior de celda de almacenamiento. Imagen de Enresa.

La zona de almacenamiento de residuos está formada por dos plataformas: la zona norte con 16 celdas y la sur con 12. Estas celdas se alinean en dos plataformas con sendos pasillos interiores. Los camiones que contienen los desechos se detienen a la entrada y con un sistema de grúas se colocan los residuos encima de cada celda.

Una vez completas, cada celda es capaz de almacenar 320 contenedores, se recubren de hormigón. Y una vez se complete el conjunto, se recubrirá de una capa de material impermeable de dos metros de grosor. El resultado final acabará siendo una pequeña colina sobre la que se plantará vegetación.

Un profundo cementerio nuclear para los residuos militares de los EE.UU

Poco o nada tiene que ver el diseño de WIPP, la Planta Piloto para Aislamiento de Residuos que el departamento de energía de los EE.UU construyó a 32 kilómetros de Carlsbad, Nuevo México. Tras el cierre del cementerio de Yucca Mountain, estamos ante uno de los mayores cementerios nucleares y un perfecto ejemplo de lo que supone un repositorio geológico profundo.

WIPP, en Nuevo México, ha sido construido sobre un terreno estable durante los últimos 200 millones de años.

Se trata de un complejo de galerías ubicado en un terreno salino y entre 500 y 1000 metros de profundidad, en una zona que geológicamente se ha mantenido estable durante mucho tiempo. El repositorio comenzó a recibir desechos en 1999 y se prevé que continúe recibiendo residuos hasta 2070.

Esta solución, la de almacenar los residuos en profundas galerías, constituye la solución más segura para el ser humano, ya que se aprovecha la estabilidad de las formaciones geológicas. Porque dentro de mucho tiempo la instalación puede dejar de funcionar, pero los residuos seguirían bien almacenados sin poner en peligro al exterior.

Otros cementerios nucleares por todo el mundo

 Contenedores en las instalaciones de Zwilag, en Würenlingen (Suiza).

Países como Francia o Bélgica poseen también sus propios cementerios nucleares, en este caso almacenes temporales para mantener aislados los residuos hasta 300 años. También Suiza cuenta con su almacén, ubicado en Würenlingen y construido en 2004 para guardar residuos de bajo y medio nivel, como en el caso de España. A diferencia de El Cabril, la de Suiza es bastante más grande y tiene espacio para hasta 200 celdas.

Finlandia también tiene su cementerio nuclear, en este caso uno para residuos de gran actividad. Se trata de la construcción de Onkalo, cueva en finés, una galería a la que se accede a través de un túnel de 420 metros de profundidad. Hasta 1996, en Finlandia se enviaba a Rusia el material radiactivo, seguidamente se utilizaron dos almacenes temporales, pero a partir de 2020 se enviará a Onkalo, situado en la península de Olkiluoto. Y allí deberían quedarse durante 100.000 años.

 Entrada al túnel de acceso del cementerio de residuos, en Finlandia. Imagen de Posiva Ltd.

La antigüedad de la cueva es su principal arma. Se trata de una de las formaciones geológicas más antiguas de Europa, un lecho de roca, rodeada de arcilla de bentonita dentro de un pozo perforado en granito. Una barrera natural resistente al agua y que no reacciona a las oscilaciones de temperatura. El coste total estimado de la instalación es de 3.000 millones de euros.

Fuente: Xataka

EE.UU.: Una planta de combustible nuclear almacenó basura radiactiva en un contenedor oxidado con fugas

Los niveles de uranio en un punto del suelo bajo un recipiente son casi el doble de la norma permitida de seguridad.

Como comenta un lector, de la gestión de los resuduos nucleares no veremos una serie de HBO o Netflix.

Un contenedor de transporte oxidado lleno de basura contaminada con uranio filtraba residuos en el suelo de la planta de combustible nuclear de Westinghouse (Carolina del Sur, EE.UU.), según han podido saber las autoridades de control sanitario y ambiental, informaron este viernes medios locales.

Los niveles de uranio en un punto del suelo bajo el contenedor en cuestión son casi el doble de la norma de seguridad permitida, según lo comunicó el Departamento de Salud y Control Ambiental de Carolina del Sur (SC DHEC, por sus siglas en inglés). El organismo culpó de la situación al protocolo de almacenamiento de residuos de la instalación para la contaminación.

La lluvia entró por un agujero que presentaba el techo de 12 metros del contenedor, mojando barriles llenos de basura radioactiva que se guardaban dentro. Finalmente, el agua contaminada de uranio goteó en el suelo de las instalaciones.

“No debemos permitir que existan estas condiciones en nuestro sitio”, dijo Mike Annacone, gerente de la planta. Asimismo, aseguró que el incidente ocurrió a causa de “una serie de problemas” por permitir que se acumularan decenas de contenedores llenos de basura contaminada de uranio. Annacone también recordó que los contenedores de la planta son viejos y están oxidados, por lo que prometió procesar el material restante y probar el suelo debajo de cada contenedor para detectar la contaminación a medida que los van vaciando.

Esta no es la primera vez que se detectan problemas en esta planta de combustible nuclear. En 2008 y en 2011 se registraron filtraciones de uranio que contaminaron el agua subterránea debajo de las instalaciones, algo de lo que no se informó a las autoridades, por lo que los lugareños temen que el problema se extienda. Asimismo, en 2018 se descubrió que la planta presentaba fugas de uranio que se filtraba por un agujero en el suelo, mientras que el mes pasado un bidón lleno de desechos radiactivos explotó y se incendió. La Comisión Reguladora Nuclear de EE.UU. (NRC, por sus siglas en inglés) investiga las instalaciones de Westinghouse por estos incidentes.

Fuente: RT

El informe más demoledor contra la energía nuclear: ni es limpia ni económicamente viable

Un estudio del instituto de investigación económica DIW Berlin afirma que la inversión en una nueva planta de energía nuclear de 1GW conduce a pérdidas medias de aproximadamente 4.800 millones de euros. Además, argumenta que las peligrosas emisiones de radioactividad de la tecnología y los riesgos de proliferación de material armamentístico y la liberación de radiación, como los accidentes en Harrisburg (1977), Chernobyl (1986) y Fukushima (2011) muestran, no la califican como una solución de energía «limpia» a tener en cuenta a la hora de hacer frente al cambio climático. Aun así, los gobiernos están incorporando la tecnología en sus planes de energía limpia en todo el mundo.

«El mito de la energía nuclear como una alternativa respetuosa con el clima a las fuentes de energía fósiles se derrumba por completo», dice Christian von Hirschhausen, coautor del estudio. Numerosos estudios científicos ya han demostrado que ninguna de las más de 600 centrales nucleares construidas hasta la fecha en el mundo ha sido competitiva: han funcionado y continuarán operando durante muchos años solo porque los gobiernos las han subsidiado de forma generalizada.

Los analistas de DIW Berlín han realizado un estudio de las 674 plantas nucleares que se han construido para demostrar que los intereses económicos privados no fueron el motivo, sino que fueron impulsados por intereses militares. “La energía nuclear nunca fue diseñada para la generación de electricidad comercial; estaba dirigido a las armas nucleares. Es por eso que la electricidad nuclear ha sido y seguirá siendo antieconómica», dice Von Hirschhausen.

La rentabilidad de las inversiones en centrales nucleares se determinó mediante un modelo de negocio que se basa en una variedad de factores que incluyen el costo mayorista de la electricidad (20-80 euros / MWh), los costos específicos de inversión (4.000-9.000 euros / kW) y el costo promedio ponderado del capital (4-10%). Y la conclusión es que cada central nuclear construida hoy tiene un valor actual neto negativo, y genera una pérdida media de 4.800 millones de euros. “Bajo ninguna circunstancia realista, una central nuclear puede mostrar un valor presente neto positivo, en el mejor de los casos, una pérdida de 1.500 millones de euros, y en el peor, la pérdida ascendería a los 8.900 millones”, dice el informe.

El estudio señala que es probable que las pocas inversiones actuales en centrales nucleares en Europa y países de la OCDE produzcan pérdidas de decenas de miles de millones en un  futuro.

El costo de la central nuclear Olkiluoto-3 en Finlandia aumentó de una estimación inicial de 3.000 millones de euros (1995) a más de 11.000 millones de euros. Esto corresponde, a partir de 2018, a unos 7200 euros por kW (ver gráfico a continuación).

En Francia, después de aumentos importantes de los costos e informes periódicos sobre la falta de seguridad del reactor, se cuestiona todo el programa de expansión nuclear de Electricité de France (EdF). Además, las altas deudas del grupo (más de 40.000 millones de euros) deberían llevar a una completa nacionalización si se quiere evitar la quiebra.

De los dos proyectos de inversión en los EEUU, uno fue abandonado después de doblar el costo (UC Summers, Virginia). En el otro (Vogtle, Georgia), el costo aumentó de los 14.000 millones iniciales, equivalentes a aproximadamente 6.200 $ el kW, a una cantidad  estimada de 29.000 millones en 2013, equivalente a aproximadamente 9.400 $ por kW en 2013.

“No va a ser rentable invertir en energía nuclear en el futuro, ni en nuevas centrales nucleares ni en la extensión de las existentes. Teniendo en cuenta que la energía nuclear es absolutamente insegura, el mito de la alternativa amigable con el clima a los combustibles fósiles está completamente agotado en sí mismo», dice Von Hirschhausen.

En cuanto a la extensión de la vida de las centrales nucleares, el informe es claro: “En todo el mundo, se discute la extensión de la madurez de los reactores antiguos de 40 a 50 o hasta 80 años. Dado que las plantas de energía nuclear están diseñadas para un tiempo de funcionamiento de 30 o 40 años, esto conlleva una considerable tensión y fatiga del material, y por lo tanto aumenta considerablemente el riesgo de accidentes”. Como ejemplos, DWI señala como reactores problemáticos Tihange (Bélgica) y Fessenheim (Francia), y la central nuclear de Dukovany en Eslovaquia, ubicada a 100 kilómetros al norte de Viena, también es motivo de preocupación.

Yendo más allá de la falta de sostenibilidad económica´y los riesgos que entraña, el informe continúa socavando aún más los debates y políticas internacionales que apoyan la energía nuclear como parte de las estrategias de acción climática. » La energía nuclear no es de ninguna manera limpia. Su radioactividad pondrá en peligro a los humanos y al mundo natural durante más de un millón de años «, añade Von Hirschhausen.

La energía nuclear, según dice el informe, no es de ninguna manera una tecnología libre de CO2 que tenga en cuenta el ciclo de vida completo (construcción, operación, desmantelamiento, extracción de uranio, producción de combustible). Un metaestudio estima una media de emisiones de gases de efecto invernadero de las centrales nucleares de 66 gramos de CO2 equivalente por kWh. Esto equivale a aproximadamente el 20% de las emisiones de una central eléctrica de gas.

El informe llama la atención a la Agencia Internacional de Energía por sugerir recientemente que la energía nuclear es un sistema de energía limpia y por alentar los subsidios a la tecnología y sus proveedores. Las políticas y los marcos en todo el mundo han incorporado la energía nuclear al mix de generación futura de energía. El Paquete de Energía Limpia de la UE, construido para respaldar la protección del clima, contiene extensiones de vida útil para varias plantas nucleares y también recomienda la construcción de más de 100 plantas nuevas antes de 2050.

«La idea de combatir el cambio climático con la energía nuclear no es nueva, pero mostramos lo equivocada y engañosa que es», explica la experta en energía y autora del estudio, Claudia Kemfert. «También debemos tener en cuenta que las facturas comerciales que hemos tomado también están causando costos horrendos a cargo de la comunidad, por ejemplo, para almacenar desechos nucleares».

Fuente: periodicodelaenergia

La demolición de edificios de la central de Zorita comenzarán en el segundo semestre

Zorita con su residuos de alta intensidad

Enresa ha calculado que a lo largo del proyecto de desmantelamiento de la central ‘José Cabrera’ se gestionarán alrededor de 104.000 toneladas de materiales, de los cuáles entre un 5 % y un 10 % serán catalogados como residuos radiactivos

La Empresa Nacional de Residuos Radiactivos (Enresa) empezará la demolición de los principales edificios de la central nuclear “José Cabrera”, en Almonacid de Zorita (Guadalajara), en el segundo semestre del año.

El subdelegado del Gobierno en Guadalajara, Ángel Canales, acompañado por personal de la Unidad de Protección Civil de la Subdelegación, ha visitado la nuclear que se encuentra en la última fase de desmantelamiento.

Se trata del primer desmantelamiento completo de una planta atómica en España, la primera que entró en operación, en 1968, y que puso fin a su actividad en 2006, tras 38 años de funcionamiento.

El subdelegado ha comprobado los trabajos desarrollados por Enresa, que superan el 85 % de lo programado, ha explicado el director de la instalación, Manuel Ondaro, quien ha confirmado que ya están desmantelados todos los sistemas operativos que estuvieron en funcionamiento durante el periodo de actividad de la central.

Durante este segundo semestre del año va a empezar la demolición de los principales edificios, entre ellos el edificio de contención del reactor, rematado por una cúpula roja que lo convierte en uno de los más característicos de la instalación, unos trabajos que se prolongarán hasta finales de 2020.

El subdelegado ha recorrido las diferentes instalaciones que forman parte de la planta nuclear -reactor, edificio auxiliar de desmantelamiento, almacenes de residuos de baja y media actividad y Almacén Temporal Centralizado (ATI)- y de conocer el proceso de gestión de los residuos generados por el desmantelamiento.

En este sentido, Enresa ha calculado que a lo largo del proyecto de desmantelamiento de la central “José Cabrera” se gestionarán alrededor de 104.000 toneladas de materiales, de los cuáles entre un 5 % y un 10 % serán catalogados como residuos radiactivos.

Fuente: eldiario.es

Mas sobre el desmantelamiento de Zorita

La empresa estatal Enresa advierte de que, con 40 años de vida de las nucleares, el déficit ya superaría los 2.300 millones

En Garoña habia un mapa con chinchetas negras de pueblos y asociaciones no favorables a la central

El responsable de Comunicación de Garoña durante 30 años dice que nunca oculto ni mintió sobre ningún incidente.

A continuación le vamos a poner varios ejemplos de que si no fué él quien mintió u ocultó, en cualquier caso lo hizo NUCLENOR (Iberdrola y Endesa)

Su despacho en Garoña, recuerda, contaba con un gran mapa de la zona de influencia de la central.  En el mismo había clavadas chinchetas de colores: las negras localizaban los municipios donde se habían firmado pronunciamientos en contra de la energía nuclear; las rojas, donde se celebraban manifestaciones; y las verdes localizaban las entidades o personas que apoyaban nuestra actividad. Eran muy pocas…”.

Para quien no le ponga cara, Antonio Cornadó ha sido durante casi 30 años el rostro público y la voz autorizada de la central nuclear de Santa María de Garoña, tiempo más que suficiente para curtirse en todas las crisis de comunicación habidas y por haber, abrazar a políticos de todos los colores y ecologistas radicales, lidiar con sindicalistas, vecinos y periodistas como él y hacer    -sin distinción- amigos en todos los bandos.

…..

Antonio Cornadó puso toda la carne en el asador para la celebración del 40 aniversario. Se apoyó en tres actos, el primero de ellos, una gran fiesta en la central con los trabajadores en activo y jubilados y los directivos de Iberdrola y Endesa. Estamos en el 11 de marzo de 2011, el día en el que reventó la central de Fukushima en Japón. “Cuando salíamos de la fiesta llegaron las primeras noticias de tsunami…”. Todo se complicó: “Garoña era igual que Fukushima y la pregunta recurrente fue: ¿lo que pasa en Japón puede ocurrir en Burgos? Insistimos en el ‘no’”. La fiesta prevista con toda la sociedad burgalesa y regional en el Fórum Evolución para el día 17 se canceló bajo la excusa de la solidaridad con los fallecidos -la Junta siempre abogó por su aplazamiento, estrategia que no compartía Nuclenor por la lectura negativa que se pudiese hacer-. Lo mismo ocurrió con la fiesta en Madrid.

“No sé si Fukushima fue nuestra puntilla, luego vino el tema de la fiscalidad, que supuso un golpe en nuestra línea de flotación porque disparaba nuestros costes”. Cornadó abandonó Garoña a principios de 2013 para presidir el Foro Nuclear -“la primera vez que un no-ingeniero presidía el lobby nuclear”- hasta otoño de 2017.

“El cierre definitivo anunciado  el 1 de agosto de 2017 me dio mucha pena, aunque se veía venir. Se agolpan muchos recuerdos y esfuerzos pero nuestro trabajo mereció la pena”. En diciembre de 2018 se desvinculó de Nuclenor. “Hay vida tras el cierre pero nunca será la misma. El movimiento tractor que genera una nuclear no lo tiene ninguna otra industria. Nuclenor debería formar parte de la solución y potenciar los valores de la zona”.

Pues mira Cornadó:

Garoña cierra por problemas de seguridad

 

Toda la experiencia acumulada durante estos 30 años, su capacidad de interlocución y relación, la ha apuesto al servicio de las empresas, instituciones privadas o particulares. Cornadó&Asociados es una consultoría que trabaja con una red de especialistas y que centra su actividad en el posicionamiento de las empresas, la reputación corporativa, la diplomacia empresarial (los lobbies) y las crisis. “Aunque está mal que lo diga, en esto soy un especialista…”.

20 años pagando los impuestos en Cantabria con el riesgo para Burgos, Pais Vasco y La Rioja

…Nos conocieron, se fiaron y nos aceptaron”. Garoña se hizo burgalesa y trasladó su sede social desde Cantabria, atendiendo a una vieja demanda de la provincia.

 

Antonio Cornadó Quibus, periodista #BlowinInTheWind #ConversacionesSobreBurgos (XXIX)

Leer completo : Diario de Burgos

 

El Estudio de Impacto Ambiental de un aeropuerto no considera un almacen nuclear que se encuentra junto a él

El cementerio está en la comunidad de Santa María Maquixco desde hace 49 años.

El cementerio nuclear está a 14 km de Santa Lucía pero no fué tenido en cuenta en el Estudio de Impacto Ambiental.

El sitio funciona desde hace 49 años sobre 16 hectáreas de la comunidad de Santa María Maquixco, municipio de Temascalapa, Estado de México.

Queda al descubierto que el cementerio se encuentra sobre un acuífero que suministra a millones de personas.

En sus más de 900 cuartillas, el Manifiesto de Impacto Ambiental (MIA) para la construcción del Aeropuerto de Santa Lucía, realizado por la Secretaría de la Defensa Nacional (Sedena) y el Instituto de Ingeniería de la UNAM, no menciona la existencia de este Centro de Almacenamiento de Desechos Radiactivos (CADER), ubicado en el centro del acuífero Cuautitlán-Pachuca, ubicado a 13 kilómetros 630 metros en línea recta hacia el noreste del futuro Aeropuerto Felipe Ángeles.

De acuerdo con Excélsior, durante una sesión pública donde se dio a conocer el MIA, el 30 de mayo de 2019,en la escuela primaria Pedro Rodríguez, de Zumpango, Estado de México, un efectivo del Ejército mexicano en menos de 48 segundos, según el video de la sesión, acabó con el tema.

El militar se paró atrás del teniente coronel Luis Enrique Calderón responsable del proyecto, por parte de la Sedena y leyó:

“Sí, este… buenos días… el señor Juan Rivera, vecino del poblado de Temascalapa, pregunta que si en la zona de amortiguamiento del área noreste del proyecto, dice que se cuenta con un panteón nuclear y que está sobre los conos de aproximación.  Revisando la cartografía encontramos que Temascalapa se encuentra en el área noreste, aproximadamente a ocho kilómetros de lo que serían los umbrales de las pistas, que normativamente valúan pendiente de 3 % y tendríamos una altura de 250 metros. Pensamos que si bien en el momento no lo hemos considerado, lo podemos revisar a bien de que quede plenamente corroborado, gracias”.

 

La semana pasada, Agustín Gaspar Buenrostro Massieu, juez de distrito, del juzgado décimo tercero de distrito con sede en Naucalpan, Estado de México, concedió una suspensión definitiva a la construcción del aeropuerto en Santa Lucía, en tanto no tenga la anuencia del Instituto Nacional de Antropología e Historia, sobre los monumentos arqueológicos y tenga una conclusión del Manifiesto de Impacto Ambiental.

Por “razones de seguridad nacional”, la Secretaría de Energía (SE) se negó a revelar qué “fuentes” se almacenan ahí, según una minuta de trabajo del 19 de enero de 2019, de la cual Excélsior tiene copia.

Este panteón radiactivo, como lo conoce la gente de la zona del municipio de Temascalapa, Estado de México, formalmente es el Centro de Almacenamiento de Desechos Radiactivos (Cader), aunque en su primeros años de operación se denominó Centro de Recolección, Tratamiento y Almacenamiento de Desechos Radiactivos de Bajo Nivel (CRTADRBN), según el ingeniero Sergio Zorrilla Romero, gerente de Seguridad Radiológica del ININ, que a mediados de octubre de 1986 participó en un seminario de la Agencia Internacional de Energía Atómica, en Río de Janeiro, Brasil y ahí se refirió a ese centro como CRTADRBN.

DESDE 1989 NO SE ENTIERRA EL MATERIAL

Un documento del Instituto Nacional de Investigaciones Nucleares (ININ), que tiene a su cargo el llamado panteón radiactivo, define la vocación de éste así:

“Tiene como función confinar temporalmente los desechos radiactivos provenientes de todo el país, con excepción de los generados en la Central de Laguna Verde (CLV) de la Comisión Federal de Electricidad (CFE), cuya gestión la realiza la propia Central”.

En ese terreno están almacenadas toneladas de “desechos radiactivos de baja y mediana actividad proveniente de actividades no energéticas de la energía nuclear, industria, medicina”,

según la Secretaría de Energía, aunque no especifica cuáles son los agentes químicos.

En un documento de octubre de 1998, el ININ, informó que en el Cader yacen sustancias como americio-241 (químico para radiografías), carbono-14 (para determinar edades), cesio-137 (apareció en Chernobyl), cobalto-60 (para esterilización de equipo médico), estroncio-90 (parte de reactores nucleares), fierro-55 (para elaborar medicamentos) e iridio-192 (para radiografía industrial), radio-226 (para aplicaciones médicas y químicas), tecnecio-99 (mayor uso en la medicina nuclear), yodo-131 (se usa en la medicina nuclear), yodo-125 (para trazar imágenes nucleares, entre otros.

El Cader, según un informe del año 2000 de la Dirección de Investigaciones Tecnológicas del ININ, cuenta con tres almacenes de superficie y una zona de cinco trincheras de 190 metros de longitud con diferentes profundidades, que van de 1,5 a 2,5 metros. Estas trincheras fueron utilizadas de 1970 a 1989, año en que fue suspendida la práctica de enterrar los desechos radiactivos, para cumplir con las indicaciones de la Comisión Nacional de Seguridad Nuclear y Salvaguardias (CNSNS), conforme a la evolución de la normativa aplicable.

Desde 1993, la CNSNS requirió al ININ elaborar la estrategia y el programa para la recuperación de los desechos radiactivos depositados en las trincheras del Cader.

LA RADIACTIVIDAD  ENFERMA GENTE AHÍ

La investigación para poner en marcha este centro, inició en las presidencias de Adolfo López Mateo (1958-1964) y Gustavo Díaz Ordaz (1964-1970); empezó a operar a finales de la administración de Díaz Ordaz, inicialmente sobre 14,7 hectáreas de la comunidad de Santa María Maquixco, municipio de Temascalapa, Estado de México, compradas por el gobierno federal en julio de 1970. En 1993, durante el mandato de Carlos Salinas de Gortari se compraron otras 1,7 hectáreas más.

Juan Antonio Medina Austria, de la Asamblea Nacional de Afectados Ambientales, afirmó a Excélsior que desde hace 49 años esos materiales radiactivos han contaminado el acuífero Cuautitlán-Pachuca, de donde se abastecen de agua 36 municipios del Estado de México, 4 del estado de Hidalgo y la alcaldía de Gustavo A. Madero, de la Ciudad de México, según el MIA, elaborado como requisito indispensable para la construcción del aeropuerto General Felipe Ángeles en Santa Lucía.

Medina Austria afirmó que gente de esa región ha muerto de cáncer y otras han nacido con malformaciones, aunque aceptó no tener pruebas científicas de estas afirmaciones, ya que nunca se ha hecho un estudio a fondo. Aunque en distintos informes del ININ se habla de verificaciones al agua, suelo, aire y a personas.

Medina Austria solicitó a la Secretaría de Energía que expertos de la UNAM realicen estudios de agua, aire y suelo para conocer el nivel de contaminación radiactiva de la zona.

Personas de algunas comunidades de la región cercana al panteón radiactivo han visto en los últimos años el aumento de padecimientos renales, principalmente entre población joven. Solo en la comunidad de  San Miguel Atlamajac, de Temascalapa, hay nueve pacientes con insuficiencia renal.

El 28 de diciembre de 2018, desde la subsecretaría de Electricidad de la Secretaría de Energía, la Asamblea Nacional de Afectados Ambientales recibió respuesta a sus peticiones hechas 24 días antes, para que se hiciera un estudio ambiental y para pedir atención a enfermos de cáncer de la región.

Sobre los estudios ambientales, la Secretaría de Energía le dijo que lo podían hacer por su cuenta y que se gestionara una solicitud ante el ININ para que conozcan los programas de vigilancia radiactiva ambiental del lugar.

Sobre los enfermos de cáncer, la SE respondió: “Con respecto al apoyo a los enfermos de cáncer y otras enfermedades en los municipios cercanos al Cader se hace notar que esta Secretaría de Energía no cuenta (con) las facultades y atribuciones al respecto. Por lo que se sugiere orientar al señor Medina Austria formule su requerimiento de apoyo a la Secretaría de Salud”.

EL ACUÍFERO

El acuífero Cuautitlán-Pachuca sobre el que está el panteón radiactivo abastece de agua a 7,5 millones de personas y tiene una superficie de 2 mil 850 kilómetros cuadrados que, según el MIA “representa 60% del área del Sistema Ambiental Regional, y a otros les corresponde el 40 %”.

En el documento de más de 900 páginas que presentó la Sedena y el Instituto de Ingeniería de la UNAM, como Manifiesto de Impacto Ambiental, además de omitir la existencia y operación desde hace 49 años del Cader, como un probable o no, agente contaminante del agua, suelo y aire.

Hasta 2002, la Comisión Nacional del Agua (Conagua) tenía registrados 207.000 pozos de agua para abastecer a 4 millones y medio de personas. El MIA no da cuenta tampoco de cuántos pozos existen en el acuífero Cuautitlán-Pachuca.

El 30 de abril de 2002, la Subdirección General Técnica de la Conagua emitió una determinación de disponibilidad de agua en el acuífero Cuautitlán-Pachuca. Según las cuentas de la Gerencia de Aguas Subterráneas de la dependencia federal, “no existe volumen disponible para nuevas concesiones en la unidad hidrogeológica denominada Acuífero Cuautitlán-Pachuca”.

Uno de los últimos hechos que pusieron en la luz pública la existencia del panteón radiactivo de Temascalapa fue a finales de 2013, cuando fue robada una fuente de cobalto-60 que viajó desde Tijuana hasta el Estado de México.

Claudia Solera, reportera de Excélsior, reconstruyó el hecho.

Contó como faltando 19 kilómetros para llegar a su destino, después de haber recorrido unos 1.800 kilómetros, el chofer de un camión de mudanzas fue atacado por un grupo de hombres armados y despojado del cargamento, al parecer sin saber de qué se trataba. Por lo que después lo abandonaron con la carga radioactiva.

Fue tal la alarma y el operativo en un ejido del municipio de Hueypoxtla, donde se encontró el material radiactivo proveniente de una clínica del IMSS, que hasta robots se tuvieron que usar para el transvase del material y poder ser llevado al llamado panteón radiactivo.

Los datos

En un documento de octubre de 1998, el ININ, informó que en el Cader yacen sustancias como:

  • Americio-241 (químico para radiografías).
  • Carbono-14 (para determinar edades).
  • Cesio-137 (apareció en Chernobyl).
  • Cobalto-60 (esterilización de equipo médico).
  • Estroncio-90 (parte de reactores nucleares).
  • Fierro-55 (para elaborar medicamentos).
  • Iridio-192 (para radiografía industrial).
  • Radio-226 (para aplicaciones médicas y químicas).
  • Tecnecio-99 (mayor uso en la medicina nuclear).
  • Yodo-131 (se usa en la medicina nuclear).
  • Yodo-125 (para trazar imágenes nucleares, entre otros.

 

Fuente: Excelsior

 

Grietas encontradas en un reactor podrían provocar evacuación de Glasgow y Edimburgo

En el vídeo aprovechan para decir que  la energia nuclear es baja en emisiones de carbono, como si en la construcción , mantenimiento y desmantelamiento no se emplearan conmustibles fósiles

Los dos reactores de la central nuclear Hunterston B, cerca de Ardrossan, tienen 43 años, el más antiguo de Europa. Han cumplido ya sus vidas operativas, que se han extendido dos veces por EDF Energy, y están programadas para cerrarse definitivamente en 2023.

Sin embargo, hay un fallo de seguridad grave en los reactores. La falla se conoce como “keyway root-cracking”: los núcleos del moderador de grafito en los reactores desarrollan grietas que conducen a inestabilidades que podrían provocar un gran accidente nuclear.

“In the very worst case the hot graphite core could become exposed to air and ignite leading to radioactive contamination of large areas of central Scotland, including the metropolitan areas of Glasgow and Edinburgh.”

Station Director Colin Weir said: “Nuclear safety is our overriding priority and reactor three has been off for the year so that we can do further inspections.

“We’ve carried out one of our biggest ever inspection campaigns on reactor three, we’ve renewed our modelling, we’ve done experiments and tests and we’ve analysed all the data from this to produce our safety case that we will submit to the ONR.

“We have to demonstrate that the reactor will always shut down and that it will shut down in an extreme seismic event.”

The operational limit for the latest period of operation was 350 cracks but an inspection found that allowance had been exceeded.

Fuente:  Meneame

Original: www.edinburghlive.co.uk