Garoña seguirá contaminando durante años. Ahora con su desmantelamiento.

El BOE publica el anuncio por el que se somete a información pública el proyecto de la fase 1 de desmantelamiento de la central nuclear Santa María de Garoña, así como el Estudio de Impacto Ambiental

Desmontar Garoña generará al menos 2.000 Tn de residuos radioactivos

El Ministerio para la Transición Ecológica abrió ayer un plazo de 30 días hábiles hasta el 4 de mayo para que los ciudadanos presenten alegaciones al proyecto de la fase I de desmantelamiento de Santa María de Garoña y a su estudio de impacto ambiental. De ambos documentos se desprende que durante los tres años que durará esta primera fase -la segunda sumará otros siete- se generarán 1.945 toneladas de residuos radioactivos de media, baja y muy baja intensidad que serán trasladados al almacenamiento de El Cabril en Córdoba, el único autorizado en el país. A ellos se sumarán otras 2.892 toneladas de materiales desclasificables mecánicos, eléctricos o de climatización, además de hormigones, con un contenido radioactivo de menor entidad que hace que la normativa vigente permita gestionarlos de manera convencional.

Los residuos radioactivos que viajarán hasta Córdoba deberán realizar un trayecto de 800 kilómetros en camiones con contenedores estancos que sirven de blindaje cuando se trata de residuos radioactivos de media y baja intensidad y en camiones convencionales, cuando son de muy baja intensidad. El proyecto calcula que serán precisos 300 viajes al Cabril, lo que se traduce en 240.000 kilómetros. Pero además, los residuos de construcción y demolición de esta primera fase conllevarán otros 90 transportes, que se estima podrían ser de 100 kilómetros, si se localiza un gestor autorizado cercano, además de otros 100 viajes para sacar la chatarra. De media, se estima que se producirá un tráfico diario de treinta camiones con picos que podrían llegar a los ochenta.

Debido a estas cifras, el estudio de impacto ambiental destaca entre los impactos negativos moderados que producirá el desmantelamiento «el volumen de tráfico, tanto de trabajadores como de transportes y maquinaria en el entorno de la instalación». Junto a este efecto también se fija en los posibles impactos sobre suelos y aguas subterráneas, en el caso de que «la retirada de elementos que pueden contener sustancias contaminantes o el propio trasiego de vehículos y maquinaria de obra puedan dar lugar a la contaminación puntual del suelo».

Asimismo, esta circulación intensa «puede dar lugar a la generación de nubes de polvo que pueden afectar a la vegetación de ribera del Ebro y a las poblaciones más cercanas». Por este motivo, en Mijaralengua y Barcina del Barco, dos localidades ubicadas a 750 y 1.000 metros en línea recta de la central, se instalarán captadores de partículas en suspensión con el fin de evaluar su incidencia sobre la población y poner medidas correctoras en caso de ser necesario. Otras medidas preventivas para paliar estos efectos negativos moderados serán «la contratación de personal local para minimizar los desplazamientos», así como «limitar la velocidad a 20 kilómetros hora» o «mantener los sistemas de recogida de drenajes y depuración para el tratamiento de cualquier derrame accidental» y evitar que llegue al río Ebro o al subsuelo.

En el proyecto redactado para la Empresa Nacional de Residuos Radioactivos, Enresa, se explica como se ha decidido el desmantelamiento total inmediato de la planta frente a la alternativa de un desmantelamiento diferido, que dejaría en latencia durante un periodo de 30 a 100 años los elementos radioactivos más peligrosos. Enresa se ha decantado por el desmantelamiento inmediato por ser «la preferencia internacional» y la solución «menos costosa». Pero en este modelo, «es necesario que transcurra un tiempo de enfriamiento del combustible gastado para que pueda depositarse en los contenedores».

Por este motivo, Enresa ha decidido ir realizando tareas preparatorias junto con Nuclenor y dejar para la primera fase del desmantelamiento la operación de sacar el combustible en contenedores al Almacén Temporal Individualizado (ATI) y afrontar simultáneamente otras labores, entre las que destaca la adaptación del edificio de turbinas como edificio auxiliar del desmantelamiento.

Fuente: Diario de Burgos

¿Como se desmantelará Garoña?

Ha salido a exposición pública la Fase 1 del desmantelamiento de Garoña.

Para hacernos una idea de lo que deberán soportar los habitantes de Tobalina y alrededores podemos ver algunos videos (edulcorados) sobre el desmantelamiento de otras centrales nucleares españolas.

Con los vídeos podemos entender la frase «la energia nuclear es la más barata» que la industria nos ha martillado durante años, teniendo en cuenta que los costes de desmantelamiento los pagamos con el dinero público de todos y todas. Barata, para las empresas explotadoras.

Entre los impactos negativos «compatibles» que describe el estudio de impacto ambiental se cita «la nube de calor» que se generará sobre el ATI y que «podría tener efectos microclimáticos a escala local» por el aumento de temperatura, aunque «no se espera que sea apreciable fuera del vallado del ATI».

¿Podría ser que una valla de alambre protege del calor y la radiación?

El CSN aprueba las modificaciones de los contenedores para Garoña

El pleno del Consejo de Seguridad Nuclear (CSN) ha informado de manera favorable la modificación del diseño del contenedor para el combustible gastado de la central nuclear de Santa María de Garoña. Su vida de diseño es de 50 años

Respecto al informe favorable a la modificación de los contenedores de combustible gastado de Santa María de Garoña, el regulador responde así a la solicitud que planteó la empresa estatal Equipos Nucleares S.A (ENSA) para la revisión 3 del estudio de seguridad el contenedor ENUN 52B.

No sabemos nada sobre variaciones de su coste económico.

La solicitud aporta la documentación relativa a las modificaciones de diseño del contenedor que requieren autorización reguladora, de acuerdo con el Reglamento de Instalaciones Nucleares y Radiactivas. En concreto, el contenedor ENUN 52B es un contenedor metálico universal de doble propósito (almacenamiento y transporte) que puede albergar hasta 52 elementos.

Se trata de un vaso o cuerpo metálico rodeado de un blindaje neutrónico y está provisto de dos tapas de cierre mediante pernos y su vida de diseño es de 50 años. En su interior dispone de un bastidor en el que se introduce el combustible gastado.

Esta solicitud ha sido presentada por ENSA en paralelo a la relativa a la revisión 1 del certificado de aprobación del diseño de bulto de transporte ENUN 52, asociada a los mismos cambios de diseño del contenedor, que también ha sido informada favorablemente.

El CSN aprueba las modificaciones de los contenedores para Garoña y autoriza el traslado de polvo de uranio a Juzbado

La solicitud aporta la documentación relativa a las modificaciones de diseño del contenedor que requieren autorización reguladora, de acuerdo con el Reglamento de Instalaciones Nucleares y Radiactivas. En concreto, el contenedor ENUN 52B es un contenedor metálico universal de doble propósito (almacenamiento y transporte) que puede albergar hasta 52 elementos. Se trata de un vaso o cuerpo metálico rodeado de un blindaje neutrónico y está provisto de dos tapas de cierre mediante pernos y su vida de diseño es de 50 años. En su interior dispone de un bastidor en el que se introduce el combustible gastado.

Fuente: Burgosconecta.com

La empresa cántabra Equipos Nucleares S.A., ENSA, se ha comprometido a suministrar el primero en septiembre de 2023 y el resto hasta 44 irá llegando cada quince días, el tiempo de carga que precisan

Los cinco primeros contenedores ya están fabricados en ENSA. – Foto: Alberto Rodrigo

El pasado 24 de marzo de 2020, a los pocos días de comenzar el estado de alarma, el Consejo de Ministros autorizó a la Empresa Nacional de Residuos Radioactivos (Enresa)a iniciar el procedimiento negociado sin publicidad para la compra de los 44 nuevos contenedores que se precisan para almacenar el combustible gastado de la central nuclear de Santa María de Garoña, teniendo en cuenta que 5 más ya están fabricados. El presupuesto que se manejó entonces era de 127,6 millones de euros, pero finalmente Enresa licitó el material por 140,3 millones y la empresa Equipos Nucleares S.A., ENSA, la única invitada al procedimiento, redujo el coste a 138,2, casi 11 más de los previstos inicialmente. 

La firma elegida por el Gobierno para la fabricación y licenciamiento de los contenedores del tipo ENUN B-52 ante el Consejo de Seguridad Nuclear (CSN) se ha comprometido a suministrar el primero en septiembre de 2023, cuatro meses antes del plazo que le marcó el pliego de condiciones de Enresa, mientras que el resto irán llegando cada 15 días. Éste es el tiempo estimado para la carga de elementos combustibles en los recipientes metálicos que se fabricarán en Santander. No obstante, antes llegarán los cinco primeros, ya fabricados. Las previsiones actuales de Nuclenor sitúan ese momento en el segundo semestre de 2021.

En un informe detallado, Enresa explica qué motiva el hecho de que se haya elegido a ENSA y no a otra empresa para esta tarea y que haya sido la única a la que se ha pedido oferta. Cuestiones técnicas y de tiempo afloran en los argumentos de la firma pública, que explica como cada año de retraso en el suministro de los contenedores le costaría 33 millones de euros a Nuclenor. 

Ese es el dinero que la propietaria de Garoña está desembolsando para afrontar las tareas de vigilancia de la piscina de refrigeración del combustible gastado, el uranio irradiado. Los gastos de personal suponen la cantidad más elevada de esta cifra, al representar 27 millones anuales, a razón de 16,8 millones para las nóminas del personal propio de Nuclenor; 6,9 millones para el empresas subcontratadas pero que trabajan en la planta, y 3,3 millones para el de empresas subcontratadas que trabajan desde el exterior.

Cuando Enresa licitó en 2012 la fabricación y licenciamiento ante el CSNde los primeros cinco contenedores sí que invitó a varias empresas. Ademas de ENSA, la ganadora del concurso, pudieron presentar sus propuestas la francesa AREVA, ahora ORANO-TN, y las estadounidenses NAC International y Holtec. Enresa explica como ENSA ya ha recorrido el largo camino del licenciamiento de los primeros cinco contenedores ante el CSN y lleva avanzado un trabajo que al resto de empresas le podría costar de 2 a 3 años, lo que supondría un retraso más en el desmantelamiento de la planta tobalinesa.

ENSA ya ha demostrado ante el CSN que su diseño «asegura el confinamiento del material radiactivo, el blindaje para minimizar la exposición a la radiación de los operarios y del medioambiente, el mantenimiento sub-crítico de la disposición de los elementos de combustible en el contenedor o la capacidad de evacuación del calor residual de dichos elementos para no superar los límites de temperatura establecidos». 

Además de ello, Enresa señala en su informe que las propuestas de estas últimas empresas no serían compatibles con las características técnicas de Garoña, al tratarse de contenedores de 100 a 120 toneladas, cuando la grúa de Garoña solo tiene capacidad de carga para mover un máximo de 75 toneladas. O por el contrario bajan a 30 toneladas, lo que conllevaría un gran número de contenedores y que no hubiera espacio suficiente en el Almacén Temporal de la central, dado que se multiplicaría el número de contenedores.

En la fase inicial del desmantelamiento de Garoña, está prevista la extracción de combustible gastado de la piscina y su almacenamiento en seco, para lo que es preciso adquirir los contenedores correspondientes, y esta autorización significa un paso «real y efectivo» para ejecutar las obras.

La compra de los contenedores se realizará con cargo al Fondo para la finanaciación de las actividades del Plan General de Residuos Radiactivos (PGRR), que se dota de la prestación que satisfacen los productores de residuos.

En el caso de las centrales en explotación, la cuantía que se abona es el resultado de multiplicar la energía generada por cada central por una tarifa fija unitaria.

El Miteco recibió el pasado 16 de marzo el borrador del VII Plan de PGRR, que solicitó a Enresa y que dará cumplimiento a la Directiva europea relativa a la gestión de este tipo de residuos.

Fuente: diario de Burgos

Los materiales para el almacenamiento de residuos nucleares no son tan seguros como se pensaba

Los materiales que los Estados Unidos y otros países planean usar para almacenar desechos nucleares de alto nivel probablemente se degradarán más rápido de lo que nadie sabía anteriormente debido a la forma en que interactúan esos materiales.

Una investigación publicada en la revista Nature Materials, muestra que la corrosión de los materiales de almacenamiento de desechos nucleares se acelera debido a los cambios en la química de la solución de desechos nucleares, y por la forma en que los materiales interactúan entre sí.

“Esto indica que los modelos actuales pueden no ser suficientes para mantener estos desechos almacenados de manera segura”, dijo Xiaolei Guo, autor principal del estudio y subdirector del Centro de Desempeño y Diseño de Formularios y Contenedores de Desechos Nucleares del Estado de Ohio. “Y muestra que necesitamos desarrollar un nuevo modelo para almacenar desechos nucleares”.

La investigación del equipo se centró en el almacenamiento de materiales para desechos nucleares de alto nivel, principalmente desechos de defensa, el legado de la producción de armas nucleares en el pasado. El desecho es altamente radiactivo. Mientras que algunos tipos de desechos tienen una vida media de aproximadamente 30 años, otros, por ejemplo, el plutonio, tienen una vida media que puede ser de decenas de miles de años. La vida media de un elemento radiactivo es el tiempo necesario para que la mitad del material se descomponga.

Estados Unidos actualmente no tiene un sitio de disposición para esos desechos; Según la Oficina de Responsabilidad General de los Estados Unidos, generalmente se almacena cerca de las plantas donde se produce. Se ha propuesto un sitio permanente para Yucca Mountain en Nevada, aunque los planes se han estancado. Países de todo el mundo han debatido la mejor manera de lidiar con los desechos nucleares; solo uno, Finlandia, ha comenzado la construcción de un depósito a largo plazo para residuos nucleares de alto nivel.

Pero el plan a largo plazo para la eliminación y el almacenamiento de desechos de defensa de alto nivel en todo el mundo es prácticamente el mismo. Implica mezclar los desechos nucleares con otros materiales para formar vidrio o cerámica, y luego encerrar esos pedazos de vidrio o cerámica, ahora radioactivos, dentro de botes metálicos. Los botes serían enterrados bajo tierra en un depósito para aislarlo.

En este estudio, los investigadores encontraron que cuando se exponen a un ambiente acuoso, el vidrio y la cerámica interactúan con el acero inoxidable para acelerar la corrosión, especialmente de los materiales de vidrio y cerámica que contienen desechos nucleares.

El estudio midió cualitativamente la diferencia entre la corrosión acelerada y la corrosión natural de los materiales de almacenamiento. Guo lo llamó “severo”.

“En el escenario de la vida real, las formas de desechos de vidrio o cerámica estarían en contacto cercano con botes de acero inoxidable. En condiciones específicas, la corrosión del acero inoxidable se volverá loca”, dijo. “Crea un ambiente súper agresivo que puede corroer los materiales circundantes”.

Para analizar la corrosión, el equipo de investigación presionó “formas de desechos” de vidrio o cerámica, las formas en que se encapsulan los desechos nucleares, contra el acero inoxidable y los sumergió en soluciones durante hasta 30 días, en condiciones que simulan las de la montaña Yucca, el repositorio de residuos nucleares propuesto.

Esos experimentos mostraron que cuando el vidrio y el acero inoxidable se presionaron entre sí, la corrosión del acero inoxidable fue “severa” y “localizada”, según el estudio. Los investigadores también notaron grietas y corrosión mejorada en las partes del vidrio que habían estado en contacto con el acero inoxidable.

Parte del problema radica en la tabla periódica. El acero inoxidable está hecho principalmente de hierro mezclado con otros elementos, incluidos el níquel y el cromo. El hierro tiene una afinidad química por el silicio, que es un elemento clave del vidrio.

Los experimentos también mostraron que cuando las cerámicas, otro soporte potencial para los desechos nucleares, se presionaron contra el acero inoxidable en condiciones que imitaban a las que se encuentran debajo de la montaña Yucca, tanto la cerámica como el acero inoxidable se corroyeron de una manera “severamente localizada”.

Referencia: Xiaolei Guo, Stephane Gin, Penghui Lei, Tiankai Yao, Hongshen Liu, Daniel K. Schreiber, Dien Ngo, Gopal Viswanathan, Tianshu Li, Seong H. Kim, John D. Vienna, Joseph V. Ryan, Jincheng Du, Jie Lian, Gerald S. Frankel. Self-accelerated corrosion of nuclear waste forms at material interfacesNature Materials, 2020; DOI: 10.1038/s41563-019-0579-x

Fuente:  alcanzandoelconocimiento.com

Bilbao tuvo un reactor nuclear hasta el siglo XXI.

El reactor que no se sabia

Durante los años sesenta y setenta, España se nucleariza. A pesar de estar excluidos del Plan Marshall a causa de la dictadura franquista, el estado recibió algo de ayuda de EE.UU.

En este paquete se encontraban los reactores nucleares experimentales para las escuelas de ingenieros y la formación técnica para los titulados.

Además del Arbi de Bilbao, el mismo año 1962 se inauguraba el reactor Argos de la Escuela de Ingenieros Industriales de Barcelona.

Los tres reactores experimentales en cuestión se instalaron en los años sesenta y setenta en virtud de un tratado suscrito con Estados Unidos en 1957, por el que España recibió el uranio enriquecido para usarlo en investigaciones civiles.

TEXTO DEL BOE

Mediante Orden Ministerial de 14 de mayo de 2002 se otorgó a los Laboratorios de Ensayos e Investigaciones Industriales (LABEIN), autorización de desmantelamiento del reactor nuclear experimental ARBI, situado en Bilbao. Una vez concluidas las operaciones de descontaminación y desmantelamiento, la entidad Laboratorios de Ensayos e Investigaciones Industriales solicitó, mediante escrito de 21 de febrero de 2005, la declaración de clausura del reactor, acompañando a la solicitud la documentación requerida en la Orden Ministerial que autorizó el desmantelamiento. Vistos la Ley 25/1964, de 29 de abril, sobre Energía Nuclear, el Reglamento sobre instalaciones nucleares y radiactivas, aprobado por Real Decreto 1836/1999, de 3 de diciembre y la Ley 15/1980, de 22 de abril, de creación del Consejo de Seguridad Nuclear, modificada por la Ley 14/1999, de 4 de mayo, de Tasas y Precios Públicos por servicios prestados por el Consejo de Seguridad Nuclear. Cumplidos los trámites ordenados por las disposiciones vigentes, a propuesta de la Dirección General de Política Energética y Minas y de acuerdo con el Consejo de Seguridad Nuclear, este Ministerio ha resuelto:

Uno.-Declarar la clausura del reactor nuclear experimental ARBI de los Laboratorios de Ensayos e Investigaciones Industriales de Bilbao.

Dos.-El titular podrá disponer de la sala donde se ubicaba el reactor sin restricción alguna de tipo radiológico. Tres.-Toda la información referente a la vida operacional del reactor, así como la correspondiente a las actividades de desmantelamiento y clausura del mismo, deberá permanecer bajo custodia de los Laboratorios de Ensayos e Investigaciones Industriales (LABEIN), durante, al menos, cinco años desde la fecha de la presente Orden Ministerial.

Lo que le comunico para su conocimiento y efectos.

Madrid, 17 de junio de 2005.-El Ministro, P. D. (Orden ITC/3187/2004, de 4 de octubre; B.O.E. del 6), el Secretario General de Energía, Antonio Fernández Segura.

Sr. Director General de Política Energética y Minas.

BOE

Comienzan a desmontar la cúpula de la central nuclear de Zorita

El desmantelamiento comenzó en 2010

La primera pieza de la ‘media naranja’ está retirada y el desmantelamiento de la central nuclear concluirá en 2020.

El coste total del desmantelamiento se cuantifica en unos 160 millones de euros

La empresa pública Enresa ha comenzado el desmontaje de la cúpula del edificio de contención de la central nuclear José Cabrera en Almonacid de Zorita (Guadalajara) que se contemplan en la fase final del desmantelamiento de esta instalación nuclear que concluirá a finales de 2020.

Estos trabajos han consistido en la retirada, izado y descenso de la primera pieza, a los que ha asistido la prensa acompañados del director desmantelamiento de la central, Manuel Ondaro. Para ello, se han empleado dos grúas de gran tonelaje que han permitido la ejecución segura de la maniobra desde una plataforma auxiliar.

«Lo que hoy hemos visto es el desmontaje y posicionamiento de la primera pieza de la cúpula del reactor. Esto supone un hito en el desmantelamiento y que nos llevará a la finalización de la desmantelación del mismo el próximo año», ha señalado Ondaro, quien ha indicado que la pieza retirada es de acero, de 8 metros de diámetro y 5,2 toneladas de peso, aproximadamente.

 

Se trata de la primera de las 330 piezas en las que será segmentada esta estructura, pues la cúpula tiene un peso total de 225,2 toneladas y un diámetro de 31,4 metros.

Una vez bajada al suelo, será troceada para poderla gestionar como material convencional. Este proceso de desmontaje de la cúpula tardará unos 40 días, por lo que antes de Navidad estará concluido.

Descontaminación total

Previo al desmontaje de este jueves, para el que llevan preparándose desde verano para realizarse con total seguridad, se han realizado numerosas labores dentro del desmantelamiento.

«Fundamentalmente hemos retirado los grandes componentes del circuito primario de la central nuclear, hemos descontaminado todo lo que es el edificio de contención y lo hemos desclasificado para poder demolerlo de forma convencional», ha explicado Ondaro.

Además, este es el inicio del desmontaje de la cúpula, del interior del edificio de contención y posterior demolición. Tal y como ha señalado Ondaro, el inicio de los trabajos de desmontaje final, es decir, las demoliciones, «se inician ahora y se espera que a finales del año que viene, el 31 de diciembre en 2020, puedan haber terminado con todos los trabajos de demoliciones de los principales edificios», que son el edificio de contención, almacén auxiliar, almacén de residuos número 1, el evaporador y el resto de edificios convencionales.

Recientemente también ha comenzado la demolición del edificio que albergaba el generador diésel de la central para lo que se está empleando maquinaria de gran tonelaje. Las dimensiones de este edificio, fabricado en hormigón armado, es de 11 metros de ancho por 7,5 metros de alto.

Desde que se inició el desmantelamiento, en febrero de 2010 se han generado aproximadamente 29.000 toneladas de materiales

Energia cara se mire por donde se mire.

A día de hoy, Enresa ha ejecutado ya cerca del 89 por ciento del proyecto de desmantelamiento de la central. Desde que se inició el desmantelamiento, en febrero de 2010 y hasta el 30 de septiembre de 2019, han trabajado unas 250 personas y se han generado aproximadamente 29.000 toneladas de materiales.

De esta cantidad, 7.000 corresponden a material convencional, 5.500 toneladas a residuos radiactivos de muy baja actividad, 2.300 a residuos radiactivos de baja y media actividad y 14.200 toneladas a material desclasificable.

El residuo de alta actividad se contiene en los 377 elementos combustibles de la central, es decir, 175 toneladas que gestionaron en 12 contenedores en la fases iniciales del desmantelamiento.

Fuente: ABC

 

Denuncian «nuevos retrasos» en el desmantelamiento de Garoña

El cabeza de lista al Congreso de Unidas Podemos por Álava, Juantxo López de Uralde, cree que estos nuevos plazos «están vinculados al hecho de que se pretende alargar la vida del resto de centrales nucleares»

El cabeza de lista al Congreso de Unidas Podemos por Álava, Juantxo López de Uralde, ha denunciado este viernes «nuevos retrasos» en el desmantelamiento de la central nuclear de Santa María de Garoña (Burgos) y cree que estos nuevos plazos «están vinculados al hecho de que se pretende alargar la vida del resto de centrales nucleares, poniendo así en grave peligro la seguridad de las mismas».
Tras participar en Vitoria en una mesa informativa de la formación, el candidato ha criticado que «más de 2 años después del cierre de la central nuclear de Garoña, los trabajos para su desmantelamiento ni siquiera han comenzado».
Asimismo, ha explicado que según las informaciones que a las que ha tenido acceso, «todo parece indicar» que los trabajos de desmantelamiento «no empezarán hasta 2022». «Se nos antoja demasiado tarde para desmantelar una central que es urgente quitar de en medio por el riesgo que supone para el medio ambiente y para la salud pública», ha señalado.
En este sentido, ha explicado que «el desmantelamiento de Garoña marca la agenda de cierre y desmantelamiento futuro del resto de las centrales nucleares españolas», y cree que este retraso «está vinculado al hecho de que se pretende alargar la vida del resto de centrales nucleares poniendo así en grave peligro la seguridad de las mismas».

Así se «entierran» los residuos radiactivos: cómo son los cementerios nucleares por dentro

Nadie los quiere, pero son necesarios para mantener este sistema demencial. Los cementerios nucleares son aquellos refugios donde almacenar y guardar residuos radiactivos, aquellos compuestos que por su naturaleza o por haber estado expuestos a una alta radiación siguen siendo peligrosos durante una gran cantidad de años. ¿Qué hacer entonces con estos residuos radiactivos? Esconderlos y guardarlos, bien hasta que se desintegren o hasta que se encuentre una mejor solución.

Los distintos cementerios nucleares se dividen en distintas categoría, en función de sus niveles de radiactividad. Y es que dentro de esos bidones amarillos que todos solemos relacionar con la energía nuclear, puede haber desde material relacionado con la fisión como uranio o plutonio, pero también cualquier material contaminado, sea ropa, ordenadores o simplemente agua.

Qué se hace con los residuos radiactivos para que no contaminen

     Mapa de un cementerio nuclear de bajo nivel.

Algunos residuos de baja y media actividad, como la ropa y las herramientas utilizadas en el mantenimiento de las centrales, se diluyen y eliminan con el tiempo. Otros son sometidos a tratamientos para intentar separar los elementos radiactivos. El resto se introducen en bidones de acero y se solidifican con alquitrán o cemento para ser almacenados hasta que el periodo radiactivo finaliza. Habitualmente menos de 30 años.

Sin embargo también hay residuos de alta actividad, normalmente aquellos generados con el combustible gastado. En este caso se intentan almacenar en la propia central hasta ser transportados en contenedores de metal resistentes a la corrosión. Es aquí donde entran los cementerios nucleares, que no dejan de ser refugios aislados donde guardar estos desechos.

Podemos diferenciar los cementerios nucleares en dos tipos: los temporales, ubicados en almacenes e instalaciones y los que se conocen como repositorios geológicos profundos, ubicados en zonas estables, aisladas de terremotos y lejos de la superficie. Auténticas galerías selladas para que estos residuos no estén en contacto con el hombre.

El Cabril, el único cementerio nuclear en España

Contenedores de hormigón fabricados a prueba de terremotos. Imagen de Xataka Ciencia.

El único cementerio nuclear español está preparado para materiales de baja y media actividad. Se trata de El Cabril, ubicado en Hornachuelos. El contenido es básicamente bidones de las centrales nucleares, con un tercio de material radiactivo y dos tercios de cemento. Todo este material se ubica en el complejo, que anteriormente era una vieja mina de uranio.

Enresa (Empresa Nacional de Residuos Radiactivos) es la encargada de su funcionamiento. El Cabril dispone además de oficinas, laboratorios, una incineradora, una piscina de agua y un depósito ciego para posibles filtraciones. Se trata de un centro muy preparado, pero hoy en día está cerca del máximo de su capacidad.

Sin embargo hay bastante polémica con la ampliación del recinto. «El cementerio nuclear del Cabril nunca debería haberse construido porque está en el sur de la Península Ibérica. Está muy alejado de la mayoría de instalaciones nucleares y radiactivas», afirma Paco Castejón, ingeniero y portavoz de Ecologistas en Acción. En su lugar, desde finales de 2011 se eligió el municipio de Villar de Cañas para albergar un nuevo ATC (Almacén Temporal Centralizado). Sin embargo las reticencias de la población y la poca determinación del Gobierno ha provocado que se estén barajando otras opciones.

 Interior de celda de almacenamiento. Imagen de Enresa.

La zona de almacenamiento de residuos está formada por dos plataformas: la zona norte con 16 celdas y la sur con 12. Estas celdas se alinean en dos plataformas con sendos pasillos interiores. Los camiones que contienen los desechos se detienen a la entrada y con un sistema de grúas se colocan los residuos encima de cada celda.

Una vez completas, cada celda es capaz de almacenar 320 contenedores, se recubren de hormigón. Y una vez se complete el conjunto, se recubrirá de una capa de material impermeable de dos metros de grosor. El resultado final acabará siendo una pequeña colina sobre la que se plantará vegetación.

Un profundo cementerio nuclear para los residuos militares de los EE.UU

Poco o nada tiene que ver el diseño de WIPP, la Planta Piloto para Aislamiento de Residuos que el departamento de energía de los EE.UU construyó a 32 kilómetros de Carlsbad, Nuevo México. Tras el cierre del cementerio de Yucca Mountain, estamos ante uno de los mayores cementerios nucleares y un perfecto ejemplo de lo que supone un repositorio geológico profundo.

WIPP, en Nuevo México, ha sido construido sobre un terreno estable durante los últimos 200 millones de años.

Se trata de un complejo de galerías ubicado en un terreno salino y entre 500 y 1000 metros de profundidad, en una zona que geológicamente se ha mantenido estable durante mucho tiempo. El repositorio comenzó a recibir desechos en 1999 y se prevé que continúe recibiendo residuos hasta 2070.

Esta solución, la de almacenar los residuos en profundas galerías, constituye la solución más segura para el ser humano, ya que se aprovecha la estabilidad de las formaciones geológicas. Porque dentro de mucho tiempo la instalación puede dejar de funcionar, pero los residuos seguirían bien almacenados sin poner en peligro al exterior.

Otros cementerios nucleares por todo el mundo

 Contenedores en las instalaciones de Zwilag, en Würenlingen (Suiza).

Países como Francia o Bélgica poseen también sus propios cementerios nucleares, en este caso almacenes temporales para mantener aislados los residuos hasta 300 años. También Suiza cuenta con su almacén, ubicado en Würenlingen y construido en 2004 para guardar residuos de bajo y medio nivel, como en el caso de España. A diferencia de El Cabril, la de Suiza es bastante más grande y tiene espacio para hasta 200 celdas.

Finlandia también tiene su cementerio nuclear, en este caso uno para residuos de gran actividad. Se trata de la construcción de Onkalo, cueva en finés, una galería a la que se accede a través de un túnel de 420 metros de profundidad. Hasta 1996, en Finlandia se enviaba a Rusia el material radiactivo, seguidamente se utilizaron dos almacenes temporales, pero a partir de 2020 se enviará a Onkalo, situado en la península de Olkiluoto. Y allí deberían quedarse durante 100.000 años.

 Entrada al túnel de acceso del cementerio de residuos, en Finlandia. Imagen de Posiva Ltd.

La antigüedad de la cueva es su principal arma. Se trata de una de las formaciones geológicas más antiguas de Europa, un lecho de roca, rodeada de arcilla de bentonita dentro de un pozo perforado en granito. Una barrera natural resistente al agua y que no reacciona a las oscilaciones de temperatura. El coste total estimado de la instalación es de 3.000 millones de euros.

Fuente: Xataka

Los ayuntamientos próximos a las nucleares intentan mantener los apoyos de la Administración que ha pagado 580 millones de subvenciones desde 1989.


Los municipios nucleares eligen nueva dirección en pleno cierre de centrales

En España hay 60 municipios situados a menos de 10 kilómetros de una central nuclear. Desde 1990, están agrupados en la Asociación de Municipios en Áreas de Centrales Nucleares (AMAC). Los municipios, con una población de unos 40.000 habitantes, viven uno de sus momentos más delicados. El Gobierno y las eléctricas han pactado el cierre escalonado de las siete plantas nucleares en funcionamiento hasta 2035 y los ayuntamientos temen por su futuro. En ese contexto, AMAC va a abrir el 1 de septiembre el proceso de renovación de su dirección, lo que incluye el cambio en la presidencia y la vicepresidencia y la ratificación de 22 miembros de la directiva en una asamblea prevista para el 18 de septiembre en Madrid.

La renovación afectará, después de cuatro años de mandato, a la actual presidenta de AMAC, Raquel González (PP), alcaldesa del Valle de Tobalina (Burgos, zona de la central de Garoña) y a la vicepresidenta y alcaldesa de Hornachuelos (Córdoba), Maria del Pilar Hinojosa, independiente. Fuentes de la asociación destacan que no se trata de un proceso de renovación marcado por la política, sino por los intereses comunes.

El fundamental de esos intereses es gestionar de la mejor manera posible el proceso de cierre de instalaciones y, sobre todo, asegurar que el flujo de las ayudas hacia los ayuntamientos no se interrumpe de forma abrupta. Los ánimos están encendidos porque la combinación de anuncios de cierres de nucleares, proyectos que sólo existen en el papel y ausencia de un Gobierno capaz de llevar las promesas al BOE alimenta la desconfianza.

25 años de ayudas

Los municipios no lo ven claro. Quieren que el flujo de fondos que han recibido desde hace 25 años no se corte. La Empresa Nacional de Residuos Radiactivos (Enresa) ha pagado al centenar de ayuntamientos cercanos a las centrales nucleares (los situados en torno a 20 kilómetros) más de 580 millones de euros entre 1989 y 2018, según datos oficiales de la empresa pública. Quieren atarlos con planes alternativos de desarrollo económico rubricados por el Gobierno. Y eso es lo que está en el aire.

El Ejecutivo, ahora en funciones, ha ofrecido una vía para facilitar la llegada de renovables a los emplazamientos de las nucleares. Lo hizo en el anteproyecto de Ley de Cambio Climático. Según el documento, las grandes compañías que cierren centrales contaminantes -ya sea de carbón, de gas o nucleares- tendrán derecho a conservar los derechos de acceso a la red eléctrica para sustituirlas por energías renovables. El problema es que el anteproyecto sólo es una declaración de intenciones. El exgerente y asesor de AMAC Mariano Vila sostiene que en la relación con el Gobierno «está todo parado, hasta tal punto que reuniones previstas en julio no se han celebrado«.

La inquietud de los ayuntamientos es lógica porque muchos de ellos dependen de las ayudas que reciben de la empresa pública Enresa para mantener sus presupuestos. Todos los municipios que reciben ayudas temen acabar como el de Almonacid de Zorita (750 habitantes, a 70 kilómetros de Guadalajara), que albergó la primera central nuclear española -José Cabrera- en proceso de desmantelamiento desde 2010. Según AMAC, «ninguna administración pública, ni el Estado, ni la Comunidad Autónoma, ni la Diputación provincial se han preocupado ni implicado en el futuro de los ciudadanos de los municipios de la zona«.

La Orden Ministerial más reciente sobre las ayudas a los municipios nucleares es del 11 de marzo de 2015. Sustituyó a la más antigua de julio de 1998 y regula las asignaciones a los municipios del entorno de las instalaciones nucleares, con cargo al Fondo para la financiación de las actividades del Plan General de Residuos Radiactivos que data de 2006. la Orden recogió un somero examen de lo logrado con el dinero entregado a los ayuntamientos desde el inicio, a finales de los años 80. No es muy optimista.

Según recoge la norma «transcurridos 25 años desde el origen de este tipo de ayudas», Industria constata que los municipios «aún mantienen una marcada dependencia económica de las nucleares», debido «a la baja incidencia» que estas ayudas han tenido en su desarrollo por su «escasa» aplicación a proyectos de inversión para generar economías alternativas. El apagón nuclear no supondrá el fin inmediato de las subvenciones -cobran por aceptar los residuos en sus proximidades y los residuos seguirán ahí durante tiempo-, pero sí exigirá un examen de los conceptos y los resultados obtenidos.

Los municipios no cobran todos lo mismo, pero para todos, las ayudas que reciben cada año de la Empresa Nacional de Residuos Radiactivos (Enresa) y de otras áreas de la Administración como el Ministerio de Interior, son más que una tabla de salvación del presupuesto anual. En muchos casos, permiten a sus habitantes disponer de servicios y atenciones impensables en otras localidades.

Fuente:   lainformacion.com